
PCoIP Connection Broker Protocol Overview

The PCoIP Connection Broker Protocol (hereafter referred to as the Broker Protocol) is a web

application program interface (API) used by PCoIP clients to securely communicate with

connection brokers that manage PCoIP sessions and resources. A PCoIP session provides access

to a remote desktop or application.

This document provides an overview of the Broker Protocol, the devices and software commonly

involved with Broker Protocol connections, and an example of a Broker Protocol session flow. This

document is not a specification and should be only considered as an informal example.

The connection broker is a portion of the overall solution in the Teradici Cloud Access Software.

From the PCoIP client’s perspective, the connection broker authenticates the user, provides a list of

‘entitled resources’ or inventory to the user for selection, and provides connection information to

the selected resource. A minimal broker implementation would provide password authentication

and inventory and connection information.

The remote resource, being either a remote desktop or remote application, is provided by a virtual

or physical host where an appropriate PCoIP agent is installed, licensed, and running.

The Broker Protocol facilitates the following functionality:

• Authenticating a user to access remote resources.

• Querying which resources are available to a user.

Normative Broker Protocol specifications

Consult the PCoIP Connection Broker Protocol Specification for further details and as a normative reference. This

document is part of Cloud Access Software, and is distributed by agreement. To request access to this document,

contact your Teradici representative.



Components and architecture of Teradici Cloud Access Software

Refer to Teradici Cloud Access Software Architecture Guide for further information about the components in the

Teradici Cloud Access Software.



PCoIP Connection Broker Protocol Overview

© 2020 Teradici 1

https://docs.teradici.com/find/product/cloud-access-software/current/pcoip-broker-protocol


• Provisioning the host resource.

• Selecting the host resource to establish a PCoIP session.

• Establishing a PCoIP session.

• Creating network security deployment topologies involving gateways and proxies.

• Creating distributed authentication deployment topologies.

• Providing high availability deployments.

Partner Requirements

A Teradici partner implementing the Broker Protocol will implement different aspects of the

system depending on which PCoIP components the partner is using.

One case is where the partner is implementing a custom deployment and brokering system, but

generally consuming the rest of the platform—such as connection managers, PCoIP agents and

PCoIP clients—‘out of the box’. In this case, the partner is responsible for implementing Broker

Protocol API from the ‘broker’ or ‘server’ perspective.

Other partners, such as gateway, authentication, or client partners, may need to implement both

from the broker or server perspective, as well as from the client side.

User Authentication

The connection broker is responsible for specifying which authentication methods, if any, must be

employed to authenticate a user before requesting a list of resources to which the user is entitled.

User authentication is used both for ensuring the user has access to the overall system, as well as

providing, when possible, single-sign-on functionality such that a user only needs to enter

credentials once to access the brokering system and the resource.

The user authentication methods discussed next are supported by the Broker Protocol. Brokers

implement the methods as appropriate for their systems and usage scenarios. Of these methods,

the password method is the only required method in the protocol. Other methods are optional.

• Password method:  The user is authenticated using the operating system (for example,

Windows) username, password, and domain name.

Partner Requirements

© 2020 Teradici 2



• Token authentication method:  The token authentication method allows the client to

reconnect to a previously disconnected PCoIP session using user credentials cached on the

client machine. The user does not need to re-enter credentials.

• Disclaimer method:  The user is prompted to accept a disclaimer statement as one of the

authentication steps/methods. The connection broker provides the disclaimer text to be

accepted by the user.

• Dialog method:  In this case, the broker sends information to the client to enable the client to

create a dialog box for user input. This method is suitable for a large number of cases,

including multi-factor and challenge-response authentication methods.

• ID card method: The ID card is a physical identification card that has been issued to the user.

The PCoIP client reads the ID card to obtain the card number stored in the card, and provides

it to the connection broker to identify and/or authenticate the user.

In addition, the following authentication methods are available. These cases require more involved

system changes and so cannot be implemented without direct interaction with Teradici:

• OAuth authentication method:  The client uses the OAuth protocol to authenticate a user.

User credentials are not passed to the client nor sent over the Broker Protocol. After

authenticating a user, the client is granted an OAuth authorization code or access token which

is passed over the Broker Protocol to access the resource.

• Kerberos authentication method:  The client uses the Kerberos protocol to authenticate a

user. After authenticating a user, the client is granted a Kerberos Ticket-Granting Ticket which

is passed over the Broker Protocol to access the resource.

Optional Features

The protocol has other optional features, which may be implemented by partner products. These

include:

• Updating a user’s password.

• Performing operations on resources such as operating system restart, sleep, resume, power

off and on, and wake-on-LAN.

• Conveying resource state and health information to the user.

• Identifying client geographical location through IP address.

Optional Features

© 2020 Teradici 3



• Remapping IP spaces through network address translations (NATs) to support connections

from outside the local network.

• Localizing output for languages other than US English. Teradici Zero Clients support a variety

of locales. Consult the release notes for each zero client for an accurate list.

Optional Features

© 2020 Teradici 4



Deployment Scenarios

This section provides a few example deployments in which the Broker Protocol is used to establish

a PCoIP session to remotely access a desktop or application.

External or WAN Deployments

The following diagram shows an example of a user using the Broker Protocol to establish a PCoIP

session in a typical external or WAN deployment.

As seen in the diagram, the PCoIP Connection Manager enables the client and the agent to

establish a remote desktop connection by creating a PCoIP session. The PCoIP Security Gateway

enables WAN users to securely access their remote desktops via the Internet without setting up a

Deployment Scenarios

© 2020 Teradici 5



VPN connection, while the connection broker authenticates the user and queries the desktop and

applications.

In larger WAN deployments, multiple connection managers and security gateways should be

deployed to provide high availability. A load balancer may then be deployed to distribute PCoIP

sessions over the pairs of connection managers and security gateways. The load balancer should

be an HTTPS reverse-proxy that supports cookie-based session stickiness.

The third-party broker agent component in the host desktop is an optional component used by the

connection broker to manage and monitor the desktop state. The broker agent and PCoIP agent

do not directly interact, but the broker agent may sample information about PCoIP sessions. As an

example, the broker agent may query PCoIP session status through the PCoIP Windows WMI

statistics counter on Windows hosts.

Internal LAN or VPN Deployments

The following diagram shows an example of a user using the Broker Protocol to establish a PCoIP

session where clients are connected to the datacenter through a LAN or VPN.

Internal LAN or VPN Deployments

© 2020 Teradici 6



In this scenario, clients can directly communicate with the PCoIP agents, which eliminates the

need for the PCoIP Security Gateway. In this case, the PCoIP Connection Manager would be

deployed without a paired PCoIP Security Gateway, as shown in the diagram. The figure also

shows an optional load balancer between the PCoIP client and the PCoIP Connection Managers.

Multi-Factor Authentication Deployments

The broker is generally responsible for ensuring the connecting user has authorization to use the

system and determining which resources the user should be presented with. With that principle, in

When a deployment involves both internal and external deployments

In a typical deployment scenario involving both internal and external deployments, internal and external users may

access the same data center by providing both a pool of external-facing connection managers paired with security

gateways, and a pool of internal-facing connection managers without security gateways.



Multi-Factor Authentication Deployments

© 2020 Teradici 7



a multi-factor authentication deployment, the broker is often responsible for performing the

authentication, as shown in the following diagram.

This diagram shows an example broker which uses Kerberos and RADIUS communications to

back-end authentication servers. The Broker Protocol and the Teradici Cloud Access Software do

not prescribe any particular structure on the broker or how it authenticates users.

Alternately, gateway or authentication appliances may perform one phase of the user

authentication before allowing access to the broker. These appliances, not shown, may be placed

inline in the Broker Protocol flow with a function similar to that of the PCoIP Connection Manager.

Direct-Connect Deployments

The Broker Protocol may also be used to establish a PCoIP session directly without using a

connection broker. In the direct-connect deployment, the client uses the Broker Protocol to directly

Direct-Connect Deployments

© 2020 Teradici 8



communicate with the remote resource to establish a PCoIP session. Direct-connect deployments

are typically used in LAN-only scenarios. The following diagram illustrates a direct-connect

deployment.

Direct-Connect Deployments

© 2020 Teradici 9



PCoIP Connection Broker Protocol Structure

Broker Protocol messages are XML messages embedded in the body-content of HTTP messages,

using a strict client/server or API message flow where the PCoIP client is the ‘client’ and the broker

is the ‘server’.

The Broker Protocol uses HTTP encrypted by Transport Layer Security (TLS) as the transport

mechanism to deliver messages. To ensure secure delivery of the Broker Protocol messages,

specific aspects of the TLS and HTTP layers are specified.

To provide solution flexibility in a compatible way, most messages provide mechanisms for name-

spaced optional variables to be tunneled between components.

Localization in the Broker Protocol is handled from the server end so the broker is responsible for

creating messages in the languages it wishes to support.

Security Requirements

For security and interoperability, all sessions are secured over TLS 1.0 or above with a specified

preferred cipher suite. Broker Protocol session metadata (cookie) handling is also specified to

ensure uniform operation across the platform.

Broker Protocol HTTP Overview

All requests to and from the Broker Protocol are initiated by the HTTP client endpoint.

PCoIP Connection Broker Protocol Structure

© 2020 Teradici 10



The Broker Protocol makes use of the following HTTP elements and functionality to transport the

Broker Protocol messages:

• HTTP version: 1.1

• HTTP Requests: POST

• HTTP Responses: 200 OK and error responses

• https-URI: 

• HTTP header content-type: application/xml charset=UTF-8

• Fixed-length or chunked HTTP payload

• Persistent and/or non-persistent HTTP connection

• X-Forwarded-For header

• Client-Log-Id header

As well, the Broker Protocol makes use of an HTTP cookie called JSESSIONID as per RFC 6265.

Broker Protocol Application (XML) Layer

Requests and responses are paired as much as possible with, for example, a client sending an 

 request and the server responding with an  response. Each request-

response pair is considered a message transaction. Only a single message transaction may be

outstanding at any point in time for each Broker Protocol session.

The Broker Protocol messages broadly fit into the following categories:

• Negotiate protocol version and capabilities (required)

• Authenticate the user (basic password required)

• Present the user with their inventory (required)

• Start a session (required)

• Perform operations on resources or machines (optional)

• Terminate the brokering session (optional)

• Broker Protocol application layer errors are indicated by sending an  message

towards the client.

https://<FQDN or ip-address>/pcoip-broker/xml

<example> <example-resp>

<error-resp>

Broker Protocol Application (XML) Layer

© 2020 Teradici 11

https://tools.ietf.org/html/rfc6265


Many flows and messages are optional. A standard flow that is required is a negotiate,

authenticate, select and start session flow. See Overview of PCoIP Session Initiation Broker

Protocol Messages provides an example of this flow.

Broker Protocol Session States

A Broker Protocol session is created when the  message has been successfully

processed and a  has been generated. The following diagramshows the state

transition diagram for the Broker Protocol session.

State transition diagram for the Broker Protocol session

As shown in the preceding figure, the Broker Protocol session has four states:

• CREATED:  The session transitions into the  state after successfully processing a 

 request. A  value is generated when the session enters this state.

• AUTHENTICATED:  The session transitions into the  state after successfully

authenticating a user (after receiving an  message with 

 result).

<hello>

JSESSIONID

CREATED

<hello> JSESSIONID

AUTHENTICATED

<authenticate-resp>

AUTH_SUCCESSFUL_AND_COMPLETE

Broker Protocol Session States

© 2020 Teradici 12



• ALLOCATED:  The session transitions into the  state after successfully allocating

a resource (after receiving an  message with 

result).

• ERRORED:  The session transitions into the  state after detecting an error and

sending an  message.

The Broker Protocol session terminates when a  message has been processed or when the

maximum session time elapses. The  is deleted/invalidated when the session

terminates.

Overview of PCoIP Session Initiation Broker Protocol Messages

The following diagram shows the typical Broker Protocol messages exchanged between the

PCoIP Connection Manager and a broker to initiate a PCoIP session.

Typical message transactions to launch a PCoIP session

The PCoIP client and PCoIP Connection Manager exchange an almost identical set of messages.

The PCoIP client initiates the Broker Protocol session by sending a  request to the PCoIP

ALLOCATED

<allocate-resource-resp> ALLOC_SUCCESSFUL

ERRORED

<error-resp>

<bye>

JSESSIONID

<hello>

Overview of PCoIP Session Initiation Broker Protocol Messages

© 2020 Teradici 13



Connection Manager. In this example, the PCoIP client authenticates the user using the username

and password. Here are the steps to initiate/broker a PCoIP session:

1. The PCoIP Connection Manager, triggered by the client, initiates a Broker Protocol session by

sending a  request message. The connection broker responds with the 

 response message. The  message contains the 

 method which tells the client to authenticate the user via the

username and password.

2. The PCoIP Connection Manager sends an  message and specifies

"password" as the authentication method. The 

message contains the username, domain, and password entered by the user. The connection

broker responds with the  message and specifies 

3. The PCoIP Connection Manager sends the  message to request the list

of resources to which the authenticated user is entitled and the broker returns the list of the

resources.

4. The PCoIP Connection Manager sends the  message to launch a

PCoIP session to the specified resource (desktop) and the connection broker responds with

the  response messages and specifies .

Example Broker Protocol Messages

The following sections provide example messages between the PCoIP Connection Manager and

the connection broker for the flow shown in the preceding diagram. The parameters marked as

'xxxx' would need to be filled in during an actual message exchange.

hello message

<hello> <hello-

resp> <hello-resp>

AUTHENTICATE_VIA_PASSWORD

<authenticate>

<authenticate method="password">

<authenticate-resp>

AUTH_SUCCESSFUL_AND_COMPLETE.

<get-resource-list>

<allocate-resource>

<allocate-resource-resp> ALLOC_SUCCESSFUL

POST /pcoip-broker/xml HTTP/1.1<CR><LF>
Host: <CR><LF>
User-Agent: xxxx<CR><LF>
Client-Log-Id: 4208fb66-e22a-11d1-a7d7-00a0c982c00d<CR><LF>
Content-Type: application/xml charset=UTF-8<CR><LF>
Content-Length: xxxx<CR><LF>
<CR><LF>
<?xml version="1.0" encoding="UTF-8"?>
<pcoip-broker version="2.1">

Example Broker Protocol Messages

© 2020 Teradici 14



hello-resp message

<hello>
   <client-info>
      <product-name>Teradici Windows Soft Client</product-name>
      <product-version>3.1.5</product-version>
      <platform>Windows 7 64-bit</platform>
      <locale>en_US</locale>
      <hostname>my-client.teradici.local</hostname>
      <serial-number>123456</serial-number>
      <device-name>some-name</device-name>
   </client-info>
   <pcm-info>
      <product-name>Teradici PCoIP Connection Manager</product-name>
      <product-version>1.0.0.12345</product-version>
      <platform>Ubuntu 14.4 64-bit</platform>
      <ip-address>10.0.136.93</ip-address>
      <hostname>cm1.example.com</hostname>
   </pcm-info>
</hello>
</pcoip-broker>

HTTP/1.1 200 OK<CR><LF>
Date: Sun. 1 Jul 2012 16:40:00 GMT<CR><LF>
Set-Cookie: JSESSIONID=aabbccddeeff00112233445566778899; HttpOnly; Secure<CR><LF>
Content-Type: application/xml charset=UTF-8<CR><LF>
Content-Length: xxxx<CR><LF>
<CR><LF>
<?xml version="1.0" encoding="UTF-8"?>
<pcoip-broker version="2.1">
<hello-resp>
   <brokers-info>
      <broker-info>
         <product-name>XYZ Broker</product-name>
         <product-version>5.1.0</product-version>
         <platform>Linux Ubuntu 10.4 64-bit</platform>
         <locale>en_US</locale>
         <ip-address>10.0.136.26</ip-address>
         <hostname>broker1.teradici.com</hostname>
      </broker-info>
   </brokers-info>
   <next-authentication>
      <authentication-methods>
         <method>AUTHENTICATE_VIA_PASSWORD</method>
      </authentication-methods>
      <domains>

hello-resp message

© 2020 Teradici 15



authenticate message

authenticate-resp message

         <domain>domain-1</domain>
         <domain>domain-2</domain>
      </domains>
   </next-authentication>
</hello-resp>
</pcoip-broker>

POST /pcoip-broker/xml HTTP/1.1<CR><LF>
Host: <CR><LF>
User-Agent: xxxx<CR><LF>
Cookie: JSESSIONID=aabbccddeeff00112233445566778899<CR><LF>
Client-Log-Id: 4208fb66-e22a-11d1-a7d7-00a0c982c00d<CR><LF>
Content-Type: application/xml charset=UTF-8<CR><LF>
Content-Length: xxxx<CR><LF>
<CR><LF>
<?xml version="1.0" encoding="UTF-8"?>
<pcoip-broker version="2.1">
<authenticate method="password" >
   <username>username</username> 
   <password>password</password>
   <domain>domain</domain>
</authenticate>
</pcoip-broker>

HTTP/1.1 200 OK<CR><LF>
Date: Sun. 1 Jul 2012 16:40:00 GMT<CR><LF>
Set-Cookie: JSESSIONID=aabbccddeeff00112233445566778899; HttpOnly; Secure<CR><LF>
Content-Type: application/xml charset=UTF-8<CR><LF>
Content-Length: xxxx<CR><LF>
<CR><LF>
<?xml version="1.0" encoding="UTF-8"?>
<pcoip-broker version="2.1">
<authenticate-resp method="password">
   <result>
      <result-id>AUTH_SUCCESSFUL_AND_COMPLETE</result-id>
      <result-str>Authentication completed successfully</result-str>
   </result>
</authenticate-resp>
</pcoip-broker>

authenticate message

© 2020 Teradici 16



get-resource-list message

get-resource-list-resp message

POST /pcoip-broker/xml HTTP/1.1<CR><LF>
Host: <CR><LF>
User-Agent: xxxx<CR><LF>
Cookie: JSESSIONID=aabbccddeeff00112233445566778899<CR><LF>
Client-Log-Id: 4208fb66-e22a-11d1-a7d7-00a0c982c00d<CR><LF>
Content-Type: application/xml charset=UTF-8<CR><LF>
Content-Length: xxxx<CR><LF>
<CR><LF>
<?xml version="1.0" encoding="UTF-8"?>
<pcoip-broker version="2.1">
<get-resource-list>
</get-resource-list>
</pcoip-broker>

HTTP/1.1 200 OK<CR><LF>
Date: Sun. 1 Jul 2012 16:40:00 GMT<CR><LF>
Set-Cookie: JSESSIONID=aabbccddeeff00112233445566778899; HttpOnly; Secure<CR><LF>
Content-Type: application/xml charset=UTF-8<CR><LF>
Content-Length: xxxx<CR><LF>
<CR><LF>
<?xml version="1.0" encoding="UTF-8"?>
<pcoip-broker version="2.1">
<get-resource-list-resp>
   <result>
      <result-id>LIST_SUCCESSFUL</result-id>
      <result-str>The user is entitled to resources</result-str>
   </result>
   <resource>
      <resource-name>My Desktop</resource-name>
      <resource-id>abcdef0123456789</resource-id>
      <resource-type session-type="VDI">DESKTOP</resource-type>
      <resource-state>UNKNOWN</resource-state>
      <protocols>
         <protocol is-default="true">PCOIP</protocol>
      </protocols>
   </resource>
   <resource>
      <resource-name>My Session Desktop</resource-name>
      <resource-id>abcdef9876543210</resource-id>
      <resource-type session-type="RDS">DESKTOP</resource-type>

get-resource-list message

© 2020 Teradici 17



allocate-resource message

allocate-resource-resp message

      <resource-state>UNKNOWN</resource-state>
      <protocols>
         <protocol is-default="true">PCOIP</protocol>
      </protocols>
   </resource>
</get-resource-list-resp>
</pcoip-broker>

POST /pcoip-broker/xml HTTP/1.1<CR><LF>
Host: <CR><LF>
User-Agent: xxxx<CR><LF>
Cookie: JSESSIONID=aabbccddeeff00112233445566778899<CR><LF>
Client-Log-Id: 4208fb66-e22a-11d1-a7d7-00a0c982c00d<CR><LF>
Content-Type: application/xml charset=UTF-8<CR><LF>
Content-Length: xxxx<CR><LF>
<CR><LF>
<?xml version="1.0" encoding="UTF-8"?>
<pcoip-broker version="2.1">
<allocate-resource>
   <resource-id>abcdef0123456789</resource-id>
   <protocol>PCOIP</protocol>
   <client-info>
      <time-zone-windows>Pacific Standard Time</time-zone-windows>
      <ip-address>192.168.0.57</ip-address>
      <mac-address>00:67:a8:2d:84:7e</mac-address>
   </client-info>
</allocate-resource>
</pcoip-broker>

HTTP/1.1 200 OK<CR><LF>
Date: Sun. 1 Jul 2012 16:40:00 GMT<CR><LF>
Set-Cookie: JSESSIONID=aabbccddeeff00112233445566778899; HttpOnly; Secure<CR><LF>
Content-Type: application/xml charset=UTF-8<CR><LF>
Content-Length: xxxx<CR><LF>
<CR><LF>
<?xml version="1.0" encoding="UTF-8"?>
<pcoip-broker version="2.1">
<allocate-resource-resp>
   <result>
      <result-id>ALLOC_SUCCESSFUL</result-id>

allocate-resource message

© 2020 Teradici 18



bye message

This is an optional message. The PCoIP client may send this message to end the broker session.

bye-resp message

      <result-str>Successfully allocated resource</result-str>
   </result>
   <target>
      <ip-address>192.168.1.56</ip-address>
      <hostname>mydesktop.teradici.com</hostname>
   </target>
   <resource-id>desktop-id</resource-id>
   <protocol>PCOIP</protocol>
</allocate-resource-resp>
</pcoip-broker>

POST /pcoip-broker/xml HTTP/1.1<CR><LF>
Host: <CR><LF>
User-Agent: xxxx<CR><LF>
Cookie: JSESSIONID=aabbccddeeff00112233445566778899<CR><LF>
Client-Log-Id: 4208fb66-e22a-11d1-a7d7-00a0c982c00d<CR><LF>
Content-Type: application/xml charset=UTF-8<CR><LF>
Content-Length: xxxx<CR><LF>
<CR><LF>
<?xml version="1.0" encoding="UTF-8"?>
<pcoip-broker version="2.1">
<bye>
   <reason>Connection complete</reason>
</bye>
</pcoip-broker>

HTTP/1.1 200 OK<CR><LF>
Date: Sun. 1 Jul 2012 16:40:00 GMT<CR><LF>
Set-Cookie: JSESSIONID=aabbccddeeff00112233445566778899; HttpOnly; Secure<CR><LF>
Content-Type: application/xml charset=UTF-8<CR><LF>
Content-Length: xxxx<CR><LF>
<CR><LF>
<?xml version="1.0" encoding="UTF-8"?>
<pcoip-broker version="2.1">
<bye-resp>
</bye-resp>
</pcoip-broker>

bye message

© 2020 Teradici 19



Errors

If an error occurs at the application layer, then the broker is responsible for generating an 

.

The following example request is a malformed request. The  element is not

closed.

In this case, the broker would create an  message. The following is an example of

an appropriate message.

<error-

resp>

<client-info>

POST /pcoip-broker/xml HTTP/1.1<CR><LF>
Host: <CR><LF>
User-Agent: xxxx<CR><LF>
Client-Log-Id: 4208fb66-e22a-11d1-a7d7-00a0c982c00d<CR><LF>
Content-Type: application/xml charset=UTF-8<CR><LF>
Content-Length: xxxx<CR><LF>
<CR><LF>
<?xml version="1.0" encoding="UTF-8"?>
<pcoip-broker version="2.1">
   <hello>
      <client-info>
   </hello>
</pcoip-broker>

<error-resp>

HTTP/1.1 200 OK<CR><LF>
Date: Sun. 1 Jul 2012 16:40:00 GMT<CR><LF>
Set-Cookie: JSESSIONID=aabbccddeeff00112233445566778899; HttpOnly; Secure<CR><LF>
Client-Log-Id: 4208fb66-e22a-11d1-a7d7-00a0c982c00d<CR><LF>
Content-Type: application/xml charset=UTF-8<CR><LF>
Content-Length: xxxx<CR><LF>
<CR><LF>
<?xml version="1.0" encoding="UTF-8"?>
<pcoip-broker version="2.1">
<error-resp>
   <result>
      <result-id>ERR_INVALID_MSG_FORMAT</result-id>
      <result-str>Invalid XML message format</result-str>
   </result>

   <detected-by>BROKER</detected-by>

   <!-- Optional error details -->

Errors

© 2020 Teradici 20



   <err-detail>failed to close ‘client-info’ element </err-detail>

</error-resp>
</pcoip-broker>

Errors

© 2020 Teradici 21


	PCoIP Connection Broker Protocol Overview
	Partner Requirements
	User Authentication
	Optional Features


	Deployment Scenarios
	External or WAN Deployments
	Internal LAN or VPN Deployments
	Multi-Factor Authentication Deployments
	Direct-Connect Deployments

	PCoIP Connection Broker Protocol Structure
	Security Requirements
	Broker Protocol HTTP Overview
	Broker Protocol Application (XML) Layer
	Broker Protocol Session States
	State transition diagram for the Broker Protocol session
	Overview of PCoIP Session Initiation Broker Protocol Messages
	Typical message transactions to launch a PCoIP session
	Example Broker Protocol Messages
	hello message
	hello-resp message
	authenticate message
	authenticate-resp message
	get-resource-list message
	get-resource-list-resp message
	allocate-resource message
	allocate-resource-resp message
	bye message
	bye-resp message

	Errors


